검색 상세

Development and Performance Evaluation of a High-Sensitivity Nitrogen Oxides (NOx) Gas Sensor Based on Nanomaterials : Application to a Real-Time Gas Sensing Monitoring System

나노신소재를 활용한 고감도 질소산화물(NOx) 가스 센서 개발 및 성능 평가

초록/요약 도움말

Nitrogen oxides (NOx) collectively refer to compounds such as nitric oxide (NO), nitrogen dioxide (NO2), nitrous oxide (N2O), dinitrogen trioxide (N2O3), and dinitrogen tetroxide (N2O4), among which NO, NO2, and N2O are the most representative species. These NOx compounds are major contributors to air pollution, serving as precursors to both ozone depletion and the formation of fine particulate matter (PM). NOx also possesses explosive and flammable properties, posing a high risk of explosion, and is harmful to human health, potentially causing respiratory and cardiovascular diseases. Conventional NOx sensors typically operate at high temperatures ranging from 200 to 600 °C, which leads to high power consumption, device degradation, increased system complexity, and safety concerns. To address these issues, this study employs single-walled carbon nanotubes (SWCNTs) as the sensor’s current-carrying channel due to their excellent electrical conductivity and their suitability for future nanoscale device miniaturization. To selectively detect NOx gases, zinc oxide (ZnO) is used as a sensing-catalyst material and coated onto the sensor surface, enabling high-sensitivity detection of ultra-low-concentration NOx gases at the ppb level even at room temperature. Furthermore, a real-time monitoring system based on the sensor’s current response is developed and validated. The real-time monitoring system utilizing the ZnO/SWCNTs-based NOx sensor developed in this study is expected to contribute to the efficient management of air pollutants generated in industrial environments and to the prevention of potential leakage of explosive NOx gases.

more

초록/요약 도움말

질소산화물(NOx)은 일산화질소(NO), 이산화질소(NO2), 아산화질소(N2O), 삼산화이질소(N2O3) 및 사산화이질소(N2O4) 등의 화합물을 총칭하는 용어로, 이 중에서 NOx를 NO, NO2, N2O가 대표적이다. 이러한 NOx는 대기오염의 주요 원인 중 하나로, 오존층 파괴와 초미세먼지 형성의 전구체 역할을 한다. NOx는 폭발성과 가연성을 지니므로 폭발 위험이 높으며, 인체에 유해하여 호흡기 및 심혈관 질환을 유발할 수 있다. 기존 NOx 센서는 200-600 °C의 고온에서 동작해야 하므로 높은 전력 소모, 소자 열화, 시스템 복잡화, 안전성 문제를 초래한다. 이에 본 연구에서는 전기전도도가 우수한 single-walled carbon nanotubes (SWCNTs)를 센서의 전류 채널로 사용하여 전력 소비를 줄이고, 향후 나노 스케일의 소형 소자 제작의 가능성을 염두하여 이를 채널 소재로 채택한다. NOx 가스를 선택적으로 감지하기 위해 zinc oxide (ZnO)를 감지 촉매 물질로 사용하여 센서 표면에 코팅함으로써, 실온에서도 ppb 수준의 극저농도 NOx 가스를 정밀하게 검출할 수 있는 고감도 센서를 제작한다. 더 나아가 센서의 전류 신호를 기반으로 한 실시간 모니터링 시스템을 개발하고 검증한다. 본 연구에서 개발한 ZnO/SWCNTs 기반 NOx 센서의 실시간 모니터링 시스템 적용은 산업현장에서 생성되는 대기오염 물질을 효율적으로 관리하고, 폭발성을 지닌 NOx 가스의 누출을 사전에 방지하는 데 기여할 것으로 기대한다.

more

목차 도움말

Ⅰ. Introduction 7
1. Nitrogen Oxides (NOx) 7
2. Case Studies of Incidents Caused by the Toxicity of NOx 9
2.1 United States: "Los Angeles Smog" 9
2.2 Japan: Designation of the "Photochemical Smog Day" 10
3. Development Limitations of Conventional NOx Sensors 10
4. Overview of NOx Gas Sensor Fabrication for Real-Time Monitoring 12
4.1 Single-Walled Carbon Nanotubes (SWCNTs) 12
4.2 Zinc Oxide (ZnO) 14
4.3 Arduino and Blynk IoT Platform 14
Ⅱ. Experimental Section 16
1. Gas Sensor Fabrication and Preparation Process 16
1.1 Fabrication Process of ZnO/SWCNTs-Based Sensors 16
1.1.1 Preparation of SWCNTs Solution and ZnO Suspension 16
1.1.2 Fabrication of Pristine SWCNTs-Based Sensors and ZnO Film Coating 17
1.2 Experimental Setup for NOx Sensor Devices 23
1.3 Voltage Conversion of Gas Sensing Current in NOx Sensors 25
1.4 Establishment of the Real-Time Monitoring Experimental Environment 28
1.4.1 Wire-Bonding Method 28
1.4.2 Configuration of the Monitoring Experimental Environment 29
2. Experimental and Measurement Results of Gas Sensor Devices 30
2.1 Evaluation of Electrical Characteristics under Room-Temperature Conditions 30
2.2 ZnO/Drop-Casted SWCNTs-Based Sensor Device 32
2.3 ZnO/Dip-Coated SWCNTs-Based Sensor Device 42
3. Application of the Real-Time Monitoring NOx Gas Sensing System 52
3.1 ZnO/SWCNTs-Based Sensor in Chip-on-Board (COB) Configuration 52
3.2 Monitoring Results of NOx Gas Sensing 59
3.3 Measurement and Analysis of NOx Sensitivity According to Humidity 61
4. NOx Gas Sensing Mechanism 63
5. Recovery Mechanism of the NOx Gas Sensor: Photo-Stimulated Desorption (PSD) 66
Ⅲ. Conclusion 68
IV. Acknowledgments 70
References 72
Abstract 77

more