검색 상세

New application of α2M proteins to an early blood marker for stroke and its mechanisms in hypoxia in vitro and in vivo models

초록/요약

Stroke is the leading cause of neurological disability worldwide and is one of the major causes of death. Acute ischemic stroke that results from sudden decrease or loss of blood circulation to an area of the brain causes a corresponding loss in neurological function. Moreover, rapid reperfusion after ischemia causes deleterious effect for brain function. Hence, it is important to accurately diagnose acute stroke and more reliably predict stroke outcome. Thus, we aimed to establish in vitro ischemia-reperfusion model, and investigate the potential of alpha 2-macroglobulin (α2M) as a novel stroke biomarker in blood. To establish an in vitro ischemic stroke model, C6 rat glial cells were cultured under anaerobic environment with 99% nitrogen gas inflow. Then, cells were harvested for analyzing hypoxia-related genes, such as hypoxia inducible factor-1alpha (Hif-1α), vascular endothelial growth factor (Vegf), glucose transporter-1 (Glut-1), p21, and p27. Besides, accumulation of HIF-1α protein was analyzed. An ischemia-reperfusion model was constructed, in which we examined the presence of pro-inflammatory genes, such as inducible nitric oxide synthase (iNos), tumor necrosis factor-alpha (Tnf-α), and interleukin-6 (Il-6), as well as cell death-associated factors, including light chain 3 B (LC3B) and phospho-beclin-1. In addition, to assess the suitability of the protein α2M as a biomarker in the ischemia-reperfusion model, Western blotting technique, confocal microscopy, and two-dimensional electrophoresis (2-DE) were used. Notably, our results revealed that the in vitro glial cell ischemia-reperfusion model was well established by carrying out nitrogen gas infusion. In our experimental model, the expression of cellular α2M proteins increased and these proteins were cleaved into smaller fragments (approximately 40 kDa in size). Moreover, cleaved α2Ms were detected in the hypoxia cell culture media as well as in serum from middle cerebral artery occlusion (MCAO) rat model. In conclusion, our study suggested that α2M could be a novel early biomarker for stroke and a critical tool that can act as a sign brain damage after massive oxidative stress owing to blood reperfusion.

more

초록/요약

뇌졸중은 전세계적으로 신경 장애와 사망을 유발하는 주요 원인 중 하나이다. 뇌로 전달되는 혈액공급이 갑작스럽게 감소되거나 중단될 경우 나타나는 급성 허혈성 뇌졸중은 신경 기능에 심각한 손실을 유발하며, 허혈성 뇌졸중이 일정시간 지속 된 이후 재관류에 의해 혈류가 개선되었을 시에도 산화 스트레스의 증가로 인해 뇌 조직은 치명적인 손상을 입는다. 그러므로 뇌졸중을 정확하게 진단하고 빠르게 대처하는 것이 매우 중요하다. 따라서 본 연구에서는 in vitro 허혈-재관류 모델을 구축하고, 뇌졸중의 새로운 혈액 생체지표로써 alpha 2-macroglobulin (α2M)의 잠재력을 살펴 보고자 하였다. 허헐성 뇌졸중 in vitro 모델을 구축하기 위하여 C6 쥐 신경교 세포를 질소가스로 유발한 혐기성 환경에서 배양하였다. 그리고 Hif-1α, Vegf, Glut-1, p21, p27과 같은 저산소 관련 유전자를 분석함과 동시에 HIF-1α 단백질의 축적을 확인하였다. 또한, 저산소를 유발한 세포에 다시 산소를 공급한 후 iNos, Tnf-α, Il-6등의 염증성인자 분석 및 LC3B, phospho-beclin-1등과 같은 세포사멸 관련 인자들을 확인하여 허혈-재관류 모델을 구축하였다. 구축된 실험모델에서 α2M의 뇌졸중 생체지표 적합여부를 평가하기 위해 웨스턴블롯, 공촛점현미경, 2차원 전기영동 등을 수행하였다. 연구결과 세포 내의 α2M 발현이 유의하게 증가하며 작은 단편 (약 40 kDa)으로 절단되는 것을 확인하였다. 또한, 절단된 작은 크기의 α2M은 세포 배양액뿐만 아니라 쥐 MCAO 모델의 혈청에서도 확인되었다. 결론적으로 본 연구를 통해 α2M단백질이 뇌졸중 초기 혈액 생체지표이자 허혈 이후 재관류에 의한 산화 스트레스로 인해 나타나는 뇌 손상의 중요한 지표로서 활용가치를 확인하였다.

more

목차

ABSTRACT 1
초록 3
LIST OF FIGURES 4
LIST OF TABLES 5
1. INTRODUCTION 6
2. MATERIALS AND METHODS 9
2.1 Cell culture 9
2.2 Induction of hypoxia 9
2.3 Animal 10
2.4 Reverse transcription-polymerase chain reaction 11
2.5 Western blot analysis 12
2.6 Measurement of protein in culture media 13
2.7 Nitric oxide (NO) assay 13
2.8 Cytotoxicity assay 14
2.8.1 Nuclear staining 14
2.8.2 Lactate dehydrogenase (LDH) measurement 14
2.9 Immunocytochemistry (ICC) 15
2.10 Middle cerebral artery occlusion (MCAO) 15
2.11 Two-dimensional gel electrophoresis (2-DE) 17
2.12 Statistical analysis 17
3. RESULTS 19
3.1 Construction of in vitro ischemia-reperfusion model 19
3.2 Evaluation of nitric oxide production 24
3.3 Cytotoxicity assay 26
3.4 Expression of α2M proteins in cells 28
3.5 Identification of α2Ms in immunocytochemistry 30
3.6 Detection of secreted α2M proteins 32
3.7 2-DE analysis 34
4. DISCUSSION 38
SUMMARY & CONCLUSION 46
REFERENCES 47

more