Fe3O4@TiO2-귀금속(Ag, Au) 광촉매 나노 입자의 합성과 특성 : Synthesis and Characterization of Regenerable
- 발행기관 강릉원주대학교 대학원
- 지도교수 정진승
- 발행년도 2017
- 학위수여년월 2017. 8
- 학위명 석사
- 학과 및 전공 일반대학원 화학과
- 세부전공 무기화학
- 실제URI http://www.dcollection.net/handler/kangnung/000000009801
- 본문언어 한국어
- 저작권 강릉원주대학교 논문은 저작권에 의해 보호받습니다.
초록/요약
나노 재료는 환경, 의학, 약학, 생물학, 화학, 광학, 전자, 공업, 에너지 등의 다양한 분야에서 응용되고 있다. 특히, 스피넬(spinel) 구조의 Fe3O4 자성 나노 입자는 고유한 특성을 활용함으로써 여러 분야로의 다양한 응용에 대한 연구가 많이 진행되어왔다. 산업에서 배출되는 폐수와 생활 하수에 포함된 염료나 인체에 유해한 유기 오염 물질들은 자연 환경으로 방출되어 여과 없이 유입될 경우, 생태계에 큰 피해를 일으키고, 사람들의 건강에 부정적인 영향을 끼친다. 그러므로 이런 환경과 인간의 건강 문제를 해결하기 위해 Fe3O4 자성 나노 입자와 광촉매 TiO2를 이용한 core-shell 형태의 나노 복합체를 합성하였다. 자성 나노 입자 Fe3O4는 3-neck 플라스크(3L)를 이용한 수열합성법을 통해 입자의 크기를 조절하였고, 많은 수득 량을 얻을 수 있었다. 그리고 클러스터 형태를 통해 초상자성을 갖는 수백 나노 크기의 Fe3O4를 합성하였다. 광촉매 나노 복합체는 그 표면에 코팅된 탄소 층과 증착된 귀금속(Ag, Au) 나노 입자, 감소된 입자의 크기를 통해 더 좋은 광촉매 활성을 나타내도록 합성하였다. 합성한 광촉매 나노 복합체는 아조계 염료인 Rh. B (Rhodamie B), 유기 오염 물질인 2,4,6-TCP (2,4,6-Trichlorophenol)와 MP (Methylparaben)을 수용액 상에서 광분해하는 실험을 통해 광촉매로써 뛰어난 효과를 확인하였다. 또한 광촉매 나노 복합체는 재사용에 대한 응용 연구를 위해 광분해 반응 후 수용액으로부터 분리 및 회수를 하였고, 이는 외부 자기장에 의한 Fe3O4의 초상자성을 통해 이루어졌다. 결과적으로 합성된 광촉매 나노 복합체는 입자 크기 감소에 따라 질량 당 표면적이 증가하는 효과와 표면에 코팅된 탄소 층에 의한 흡착 능력 증가와 TiO2의 아나타제 형태 안정화 효과, 에너지 준위 차이에 따른 전자 이동 및 전달의 증가 효과, 증착된 귀금속(Ag, Au) 나노 입자의 LSPR (Localized Surface Plasmon Resonance)에 의한 가시광선 이용을 통해 훨씬 더 향상된 광촉매 활성을 확인하였다.
more목차
Ⅰ. 서론 ························································································· 1
1. 자성 나노 입자의 합성과 응용 ········································· 1
2, 광촉매 연구 및 응용 ························································· 5
Ⅱ. 실험 ························································································· 18
1. 시약, 기구 및 측정 기기 ·················································· 18
2, 자성 나노 입자 Fe3O4의 합성 ········································· 19
3. Fe3O4@TiO2 광촉매 나노 복합체 합성 ······························ 20
3.1. Fe3O4@TiO2 core-shell 나노 입자 합성 ················ 20
3.2. Fe3O4@TiO2-귀금속(Ag, Au) 합성 ······················· 21
3.2.1. Fe3O4@TiO2-Ag 합성 ······························ 21
3.2.2. Fe3O4@TiO2-Au 합성 ······························ 22
3.2.3. Fe3O4@TiO2-Ag, Au 합성 ······················· 23
3.3. Fe3O4@TiO2@C-Ag, Au 합성 ································ 24
4. Fe3O4@TiO2 광촉매 나노 복합체 응용 실험 ····················· 27
4.1. Rh.B 광분해 실험 ·················································· 27
4.2. 2,4,6-TCP 광분해 실험 ········································· 28
4.3. MP 광분해 실험 ····················································· 29
Ⅲ. 결과 및 고찰 ··········································································· 31
1. Fe3O4의 구조 및 특성 분석 ·············································· 31
2. Fe3O4@TiO2 광촉매 나노 복합체의 구조 및 특성 분석 ····· 34
2.1. Fe3O4@TiO2-귀금속(Ag, Au)의 구조 및 특성 ······· 34
2.2. Fe3O4@TiO2@C-Ag, Au의 구조 및 특성 ·············· 42
3. Fe3O4@TiO2 광촉매 나노 복합체의 응용 분석 ··················· 48
3.1. Fe3O4@TiO2-귀금속(Ag, Au) 나노 입자의 광분해 실험 분석 48
3.2. Fe3O4@TiO2 나노 입자의 크기에 따른 광분해 실험 분석 57
3.3. Fe3O4@TiO2@C-Ag, Au 나노 입자의 광분해 실험 분석 60
3.4. Fe3O4@TiO2 광촉매 나노 복합체의 재사용 분석 ····· 71
Ⅳ. 결론 ························································································· 75
Ⅴ. 참고 문헌 ················································································ 77
국문 초록 ························································································· 82
영문 초록 ························································································· 84

