검색 상세

송전선로를 위한 개선된 고장점 표정 기법에 관한 연구

A Study on the Advanced Fault Location Technique for Transmission Line

초록/요약 도움말

송전선로는 전 지역에 분포되어 있고 외부에 노출되어 있어 뇌나 풍우 등 자연조건의 영향을 받아 전력계통에서의 고장 발생률이 다른 설비에 비하여 대단히 높다. 이때 보호계전기와 고장점 표정장치(Fault Locator)는 송전선로에서의 고장 발생시 정확한 고장의 판단과 고장점 표정으로 신속하게 복구하는 것이 전력계통을 안정적으로 유지하고 신뢰성을 향상시키는 측면에서 매우 중요하다. 고장점 표정장치는 송전선로 양단에서 전압, 전류신호를 수집하면 고장점 표정의 정확성을 높여주어 오차를 줄일 수 있으나, 실용적인 측면을 고려하여 편단에서 전압, 전류신호를 수집하는 기법들이 사용되고 있다. 그럼에도 불구하고 고장점 표정장치는 보호영역의 끝 부분에서 발생되는 특정한 고장의 경우라도 정확하게 고장 위치를 찾아주어야 한다[1]. 종래의 고장점 표정 기법은 왜곡된 계전신호에서 직류옵셋성분(DC offset component)이 완전히 제거되지 못한 채 고장점 표정을 실시하므로 송전선로 고장발생시 고장 위치에 대한 오차가 발생하였다. 고성능의 고장 판단과 고장점 표정을 위해서는 지수 함수적으로 감쇠하는 직류옵셋성분을 효과적으로 제거하여 페이저 연산에 영향을 끼치지 않는 필터에 관한 연구가 필요하다. 전력계통고장에 따른 고장전류는 직류옵셋성분과 고조파성분으로 나타낼 수 있으며 직류옵셋성분은 전압위상각 0° 또는 180°에 가까울수록 현저하고 고조파성분은 전압위상각 90° 또는 270°에 가까울수록 현저하다[2,3]. 국내의 관련된 연구로는, 154kV 혼합송전선로에서 1선 지락고장시 고장 판단 및 고장점 표정을 위해 뉴로-퍼지 시스템을 이용하는 기법이 제안되었다[4]. 또 소프트웨어 Fault Tolerance의 NVP(N-Version Programming) 모델을 적용한 고장점 표정 알고리즘[5], 다비치 웨이브릿 변환(Daubechie Wavelet Transform)을 취한 후 임피던스를 계산하는 방식으로 계산된 고장 임피던스로부터 고장점 표정을 위한 단선도 해석 기법이 제안되었다[6]. 한편, 변전소에 IEC 61850이 적용되면서 IED(Intelligent Electronic Device) 는 GOOSE 메시지를 이용하여 상대단 전류 정보를 취득할 수 있으며 리액턴스 효과와 상호임피던스의 영향을 받지 않고 임피던스 연산을 할 수 있어 보다 정확한 고장점 표정이 가능하다. 하지만 양단 정보를 사용하기 위해서는 시간 동기가 필수적이며 이를 위한 연구가 필요하다[7]. 2회선 이상의 다회선 송전선로, 특히 초고압 송전선로인 765kV 송전선로와 같은 경우에는 비연가로 건설되어 단상 또는 1회선 송전선로에 비해 임피던스 불평형이 심하여 정확한 고장점 표정을 어렵게 만드는 원인이 된다. 이를 위해 초고압 비연가 2회선 송전선로에서 진행파 분석을 통한 고장점 표정 알고리즘이 발표되었다[8,9]. 다른 기법으로는 자기단 전원임피던스를 전류분배계수에 사용하여 자기단 전원임피던스 변화에 대응할 수 있는 고장점 표정 알고리즘이 제안되었다[10,11]. 최근에는 동기페이저 방식을 이용한 신재생에너지 연계형 송전선로 고장점 표정 알고리즘이 제안되었다[12]. 해외에서는, 송전선로 보호계전기 적용을 위한 IEEE 표준이 발표된 이후, 2011년과 2015년에 개정이 되었으며 2014년에는 AC 송전선로와 배전선로의 고장점 표정을 위한 IEEE 표준이 발표되었다[13∼15]. 기존 연구에서는 직류옵셋성분을 제거하기 위하여 LPF(Low Pass Filter) 또는 FIR(Finite Impulse Response) 필터를 사용하고 있다. 이는 직류옵셋성분이 완전히 제거되지 못하거나 시정수를 알아야하는 등의 문제점을 가지고 있다. 본 논문에서는 송전선로 고장발생시 고장점 표정의 오차를 줄이기 위하여 고차필터로 구성된 직류옵셋제거필터에 기초한 거리계전기법에 의하여 고장점 표정의 성능을 개선하고자 한다[16]. 고차필터로 구성된 직류옵셋제거필터는 페이저 연산시 사전에 시정수를 설정해 줄 필요가 없고 1주기 데이터만으로도 직류옵셋성분을 정확하게 추정하여 제거할 수 있다[17,18]. 개선된 고장점 표정 기법은 전압과 직류옵셋성분이 제거된 전류를 이용하여 DFT(Discrete Fourier Transform) 필터링 후 임피던스를 계산한다. 제시한 기법의 성능 개선을 입증하기 위하여 ATP(Alternative Transient Program) 소프트웨어에서 154kV 송전계통을 모델링 하고 여러 가지 고장 조건에 따른 데이터를 수집, 활용하였다. 제시한 고장점 표정 알고리즘은 C언어로 구현하여 성능을 검증하였다.

more

초록/요약 도움말

Most high-voltage transmission systems are interconnected in a network system and are exposed to outside. Because transmission line was affected natural conditions such as lightning or weathertight, fault rate of transmission line is very higher than other facilities. If the fault occurs in the transmission line, the protection relay and fault locator must quickly restore fault by accurate fault discrimination and fast fault locating. So, it is very important in terms of keeping the power system stably and improving the reliability. An error of the conventional fault location technique has occurred highly, because the fault locating carry out without being completely removed the DC offset component from the distorted relaying signal. For the fault discriminant and fault locating of high performance by removing exponentially decreasing DC offset component, the studies on the optimal filter algorithm is required. The fault signals of the power system can be expressed as the DC offset component and the harmonic component. If the voltage phase angle is close to 0° or 180°, the DC offset component is most prominent and is close to 90° or 270°, harmonic component is most prominent. This paper proposes the advanced fault locating technique based on the DC offset removal filter composed of high-order filter, in order to reduce the fault locating error when fault occur in transmission line. The DC offset removal filter is not necessary to set a time constant in advance when calculating the phasor, and may remove the DC offset component by accurately estimate only one cycle data. The advanced fault location technique calculate impedance using the voltage and current removed DC offset component after the DFT filtering. In order to the performance evaluation of the proposed fault locating technique, in the paper was described and modeled the 154kV transmission system in ATP software and collected simulation data by a number of fault conditions utilize. The proposed fault locating algorithm was implemented in C language. At the end of the paper, the results of the off-line simulation were presented.

more

목차 도움말

영문요약 ··················································································· i
목 차 ·················································································· iii
그림목차 ·················································································· v
표 목차 ·················································································· vi


1. 서론 ····················································································· 1

2. 개선된 고장점 표정 기법 ···························································· 4
2.1 직류옵셋제거필터 ································································· 5
2.2 DFT에 의한 기본파 페이저 추출 ·············································· 8
2.3 지락고장시 임피던스 계산 ······················································· 8
2.4 단락고장시 임피던스 계산 ····················································· 11

3. 시뮬레이션 및 결과 ································································· 14
3.1 송전선로의 계통데이터 ························································· 14
3.2 송전선로의 모델링 ······························································ 16
3.2.1 지락고장시 송전선로 모델링 ················································ 16
3.2.2 단락고장시 송전선로 모델링 ················································ 17
3.3 시뮬레이션 방법 ································································· 18
3.4 결과 및 고찰 ····································································· 19
3.4.1 송전선로의 지락고장시 결과 ················································ 19
3.4.2 병행 2회선 송전선로의 지락고장시 결과 ································· 28
3.4.3 송전선로의 단락고장시 결과 ················································ 37
3.4.4 병행 2회선 송전선로의 단락고장시 결과 ································· 48
3.4.5 임피던스 수렴 특성 ·························································· 60
3.4.6 고장점 표정 오차율 ·························································· 68

4. 결론 ··················································································· 73

참고문헌 ················································································· 74

more