검색 상세

1차원 광화학 모형을 위한 태양 복사의 모수화

A Solar Radiation Parameterization for 1-Dimensional Photochemical Model

초록/요약

The distribution of ozone in the atmosphere depends on atmospheric radiation, photochemistry and dynamics, and the overall process of these can be understood through the development of chemistry-climate models including the interaction between chemistry and climate. The purpose of this study, as an important foundational research to develop chemistry-climate models, is to understand the change of stratospheric ozone by the process of radiation and photochemistry and to develop a one-dimensional photochemical model. In order to the recent ozone change, long-term observation data of ground-based stations, TOMS and OMI satellite data, and ECMWF reanalysis data were analyzed. In all data, the trend of ozone depletion, which was serious until 1990s, has regionally slowed down or turned to increase. Regarding the ozone change in the vertical profile, there has been a contrast between the increase in the stratosphere and decrease in the troposphere of ozone mixing ratios. To examine the effect of this recent ozone change on the climate, one-dimensional radiative convective equilibrium model and KNU-AGCM are used in this study. The result of one-dimensional model indicated that the recent severe ozone depletion in the stratosphere led to the considerable temperature drop in the stratosphere. However, there has been little temperature change in the surface and troposphere. The experiments result of KNU-AGCM shows that the unrealistic ozone data(climatological monthly ozone) application was one of the causes for the error in the temperature and zonal wind components in the stratosphere and upper troposphere shown in the KNU-AGCM. This study developed one-dimensional photochemical model including 37 photolysis reactions and 93 molecular reactions known to have substantial influence on the production and destruction of ozone. In the solar radiation wavelength range 175.4-852.5 nm, which is important for photochemistry in the middle atmosphere, is divided into 17 wavelength bands to make possible efficient calculation of photolysis rate in 3-D coupled chemical-climate model. The O_(3), O_(2), and water vapor absorption coefficients, Rayleigh scattering coefficient, and actinic solar flux in each band calculated by using Chandrasekhar(1960) method and line-by-line model with 10 cm^(-1) resolution. The 37 photolysis frequency is parameterized as a function of temperature. In comparison with a reference model, the 1-D photochemical model developed in this study produced calculations of photolysis frequency with less than 5% error where the rates are important in photochemistry. Considerably accurate calculations of photolysis frequency resulted even under cloudy sky conditions and in the lower troposphere. The result of calculations of vertical ozone distribution and total ozone amount with time change showed considerable accurate compared to the reference model.

more

목차

제 1 장 서론 = 1
제 2 장 대기 오존의 분포 특성 = 8
2.1 지상 관측 자료 = 8
2.2 위성 관측 자료 = 9
2.3 재분석 자료 = 14
2.4 지상 관측 자료의 복원 = 23
제 3 장 오존 변화가 기후에 미치는 효과 = 28
3.1 복사-대류 평형 모형 = 29
3.2 강릉대학교 대기 대순환 모형 = 32
3.3 오존 자료 및 수치 실험 설계 = 33
3.4 수치 실험의 결과 분석 = 36
제 4 장 태양 복사 과정 = 40
4.1 복사 전달 방정식 = 40
4.2 기준 모형 = 43
4.3 모수화 모형 = 47
4.4 광화학 복사속 = 48
4.5 구름 입자의 산란 특성 모수화 = 51
4.6 에어로졸 산란 특성 모수화 = 55
제 5 장 광화학 과정 = 57
5.1 광화학 과정 = 57
5.2 광해리 반응 = 57
5.3 기준 모형에서 광해리율의 계산 = 76
5.4 모수화 모형에서 광해리율의 계산 = 81
5.5 분자 반응 = 88
5.6 연속 방정식 = 94
제 6 장 결 과 = 96
6.1 구름이 없는 대기에서 광해리율 계산 = 96
6.2 구름이 있는 대기에서 광해리율 계산 = 104
6.3 오존의 연직 분포 변화 = 105
6.4 오존 전량의 변화 = 109
6.5 파장 영역 구분에 따른 광해리율 및 오존량 변화 = 113
6.6 반응식의 변화에 따른 오존 전량의 변화 = 116
제 7 장 결 론 = 120
참고 문헌 = 122
영문 요약 = 131
부록 = 133

more